AWA* - A Window Constrained Anytime Heuristic Search Algorithm

نویسندگان

  • Sandip Aine
  • P. P. Chakrabarti
  • Rajeev Kumar
چکیده

This work presents an iterative anytime heuristic search algorithm called Anytime Window A* (AWA*) where node expansion is localized within a sliding window comprising of levels of the search tree/graph. The search starts in depth-first mode and gradually proceeds towards A* by incrementing the window size. An analysis on a uniform tree model provides some very useful properties of this algorithm. A modification of AWA* is presented to guarantee bounded optimal solutions at each iteration. Experimental results on the 0/1 Knapsack problem and TSP demonstrate the efficacy of the proposed techniques over some existing anytime search methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probably Approximately Correct Heuristic Search

A* is a best-first search algorithm that returns an optimal solution. w-admissible algorithms guarantee that the returned solution is no larger than w times the optimal solution. In this paper we introduce a generalization of the w-admissibility concept that we call PAC search, which is inspired by the PAC learning framework in Machine Learning. The task of a PAC search algorithm is to find a s...

متن کامل

An Approximate 0-1 Edge-Labeling Algorithm for Constrained Bin-Packing Problem

This paper describes a constrained bin-packing •problem (CBPP) and an approximate, anytime algor i thm for solutions. A CBPP is a constrained version of the bin-packing problem, in which a set of items allocated to a bin are ordered in a way to satisfy constraints defined on them and achieve near-optimality. The algor i thm for CBPP uses a heuristic search for labeling edges w i th a binary val...

متن کامل

Evaluating Anytime Algorithms for Learning Optimal Bayesian Networks

Exact algorithms for learning Bayesian networks guarantee to find provably optimal networks. However, they may fail in difficult learning tasks due to limited time or memory. In this research we adapt several anytime heuristic search-based algorithms to learn Bayesian networks. These algorithms find high-quality solutions quickly, and continually improve the incumbent solution or prove its opti...

متن کامل

Anytime Heuristic Search: Frameworks and Algorithms

Anytime search is a pragmatic approach for trading solution cost and solving time. It can also be used for solving problems within a time bound. Three frameworks for constructing anytime algorithms from bounded suboptimal search have been proposed: continuing search, repairing search, and restarting search, but what combination of suboptimal search and anytime framework performs best? An extens...

متن کامل

Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem

An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007